ADVANCE INFORMATION

1M (64K x 16) Static RAM

Features

• Very high speed: 55 ns

Wide voltage range: 1.65V to 2.2V

· Ultra-low active power

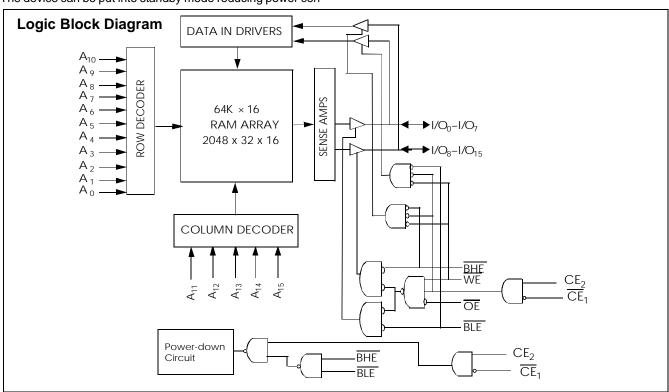
— Typical active current: 0.5 mA @ f = 1 MHz — Typical active current: 3.75 mA @ f = f_{MAX}

Ultra-low standby power

• Easy memory expansion with $\overline{CE_1}$, $\overline{CE_2}$, and \overline{OE} fea-

· Automatic power-down when deselected

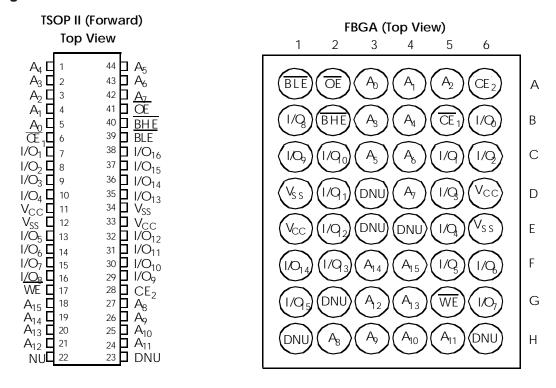
· CMOS for optimum speed/power


 Packages offered in a 48-ball FBGA and a 44-pin TSOP Type II

Functional Description^[1]

The CY62127DV20 is a high-performance CMOS static RAM organized as 64K words by 16 bits. This device features advanced circuit design to provide ultra-low active current. This is ideal for providing More Battery Life™ (MoBL®) in portable applications such as cellular telephones. The device also has an automatic power-down feature that significantly reduces power consumption by 99% when addresses are not toggling. The device can be put into standby mode reducing power consumption by more than 99% when deselected Chip Enable 1 (CE₁) HIGH or Chip Enable 2 (CE₂) LOW or both BHE and BLE are HIGH. The input/output pins (I/O₀ through I/O₁₅) are placed in a high-impedance state when: deselected Chip Enable 1 (CE₁) HIGH or Chip Enable 2 (CE₂) LOW, outputs are disabled (OE HIGH), both Byte High Enable and Byte Low Enable are disabled (BHE, BLE HIGH) or during a write operation (Chip Enable 1 (CE₁) LOW and Chip Enable 2 (CE₂) HIGH and WE LOW).

Writing to the device is accomplished by taking Chip Enable 1 (CE₁) LOW and Chip Enable 2 (CE₂) HIGH and Write Enable (WE) input LOW. If Byte Low Enable (BLE) is LOW, then das pins (A₀ through A₁₅). If Byte High Enable (\overline{BHE}) is LOW, then data from I/O pins (I/O₈ through I/O₁₅) is written into the location specified on the address pins (A0 through A15).


Reading from the device is accomplished by taking Chip Enable 1 (CE₁) LOW and Chip Enable 2 (CE₂) HIGH and Output Enable (OE) LOW while forcing the Write Enable (WE) HIGH. If Byte Low Enable (BLE) is low, then data from the memory location specified by the address pins will appear on I/O₀ to I/O₇. If Byte High Enable (BHE) is LOW, then data from memory will appear on I/O₈ to I/O₁₅. See the truth table at the back of this data sheet for a complete description of read and write

Note:

1. For best-practice recommendations, please refer to the Cypress application note "System Design Guidelines" on http://www.cypress.com.

Pin Configuration^[2]

Note:

2. DNU pins are to be connected to V_{SS} or left open.

ADVANCE INFORMATION

CY62127DV20 MoBL2®

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature65°C to +150°C
Ambient Temperature with Power Applied55°C to +125°C
Supply Voltage to Ground Potential
0.2V to V _{CCMAX} + 0.2V
DC Voltage Applied to Outputs
in High-Z State ^[3] 0.2V to V _{CC} + 0.2V

DC Input Voltage ^[3]	-0.2V to V _{CC} + 0.2V
Output Current into Outputs (LOW)	20 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	> 2001V
Latch-up Current	> 200 mA
Operating Range	

Range	Ambient Temperature (T _A)	v _{cc}
Industrial	-40°C to +85°C	1.65V to 2.2V

Product Portfolio

							Power Di	ssipation		
					Operating, Icc (mA)					
V _{CC} Range(V)		Speed		f = 1 MHz f		MAX	Standby, I _{SB2} (μA)			
Product	Min.	Typ. ^[4]	Max.	(ns)	Typ. ^[4]	Max.	Typ. ^[4]	Max.	Тур. ^[4]	Max.
CY62127DV20L	1.65	1.8	2.2	55	0.5	1	3.75	7.5	0.5	4
CY62127DV20LL				55			3.75	7.5	0.5	2.5

V_{IL(min.)} = -2.0V for pulse durations less than 20 ns.
 Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ)}, T_A = 25°C.

ADVANCE INFORMATION

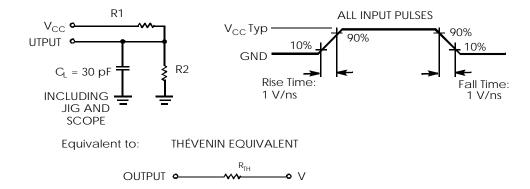
DC Electrical Characteristics (Over the Operating

Range)

					CY	62127DV20)-55	
Parameter	Description	Test Conditions			Min.	Typ. ^[4]	Max.	Unit
V _{OH}	Output HIGH Voltage	$I_{OH} = -0.1 \text{ mA}$	$V_{CC} = 1.65V$		1.4			V
V _{OL}	Output LOW Voltage	I _{OL} = 0.1 mA	$V_{CC} = 1.65V$				0.2	V
V _{IH}	Input HIGH Voltage		•		1.4		V _{CC} + 0.2	V
V _{IL}	Input LOW Voltage				-0.2		0.4	V
I _{IX}	Input Leakage Current	$GND \le V_I \le V_{CC}$	$GND \le V_1 \le V_{CC}$				+1	μΑ
I _{OZ}	Output Leakage Current	$GND \leq V_O \leq V_{CC}$, C	Output Disable	b	-1		+1	μΑ
I _{CC}	V _{CC} Operating Supply Cur-	$f = f_{MAX} = 1/t_{RC}$	Vcc = 2.2V, I			3.75	7.5	mA
	rent	f = 1 MHz	= 0mA, CMC level	S		0.5	1	
I _{SB1}	Automatic CE Power-down	$\overline{CE}_1 \ge V_{CC} - 0.2V$, (L		0.5	4	μΑ
	Current – CMOS Inputs	$V_{IN} \ge V_{CC} - 0.2V$, $V_{IN} \le 0.2V$, $f = f_{MAX}$ (Address and Data Only), $f = 0$ (OE, WE, BHE and BLE)			0.5	2.5		
I _{SB2}	Automatic CE Power-down	$\overline{CE}_1 \ge V_{CC} - 0.2V$, (L		0.5	4	μΑ
	Current – CMOS Inputs	$V_{IN} \ge V_{CC} - 0.2V$ or = 0, V_{CC} =2.2V	$V_{IN} \leq 0.2V$, f	LL		0.5	2.5	

Capacitance [5]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	TA = 25°C, f = 1 MHz	6	pF
C _{OUT}	Output Capacitance	$V_{CC} = V_{CC(typ)}$	8	pF

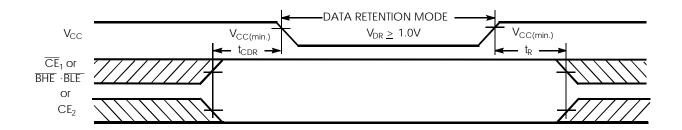

Thermal Resistance

Parameter	Description	Test Conditions	BGA	Unit
θ_{JA}	Thermal Resistance (Junction to Ambient) ^[5]	Still Air, soldered on a 3 x 4.5 inch, two-layer printed circuit board	55	C/W
θ_{JC}	Thermal Resistance (Junction to Case) ^[5]		16	C/W

Note

5. Tested initially and after any design or proces changes that may affect these parameters.

AC Test Loads and Waveforms



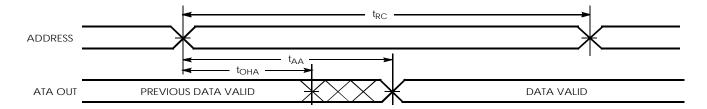
Parameters	1.8V	UNIT
R1	13500	Ω
R 2	10800	Ω
R _{TH}	6000	Ω
V _{TH}	0.80	V

Data Retention Characteristics

Parameter	Description	Conditions	-	Min.	Typ. ^[4]	Max.	Unit
V_{DR}	V _{CC} for Data Retention			1		2.2	V
I _{CCDR}	Data Retention Current	$V_{CC} = 1V, \overline{CE}_1 \ge V_{CC} - 0.2V, \overline{CE}_2 \le 1$	L			1	μΑ
		$0.2V, V_{IN} \ge V_{CC} - 0.2V \text{ or } V_{IN} \le 0.2V$	LL			TBD	
t _{CDR} ^[5]	Chip Deselect to Data Retention Time			0			ns
t _R ^[6]	Operation Recovery Time			t _{RC}			ns

Data Retention Waveform^[7]

Notes:

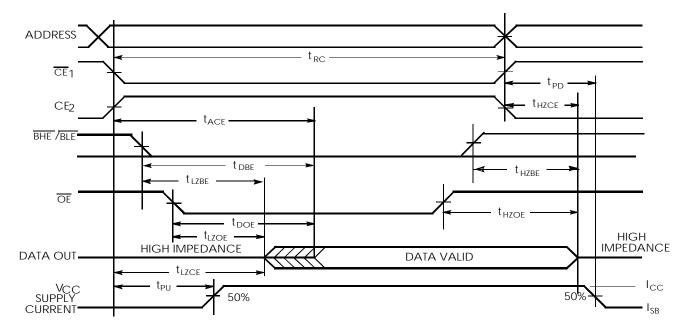

- 6. Full device operation requires linear V_{CC} ramp from V_{DR} to $V_{CC(min.)} > 100 \,\mu s$ or stable at $V_{CC(min.)} > 100 \,\mu s$.
- 7. BHE BLE is the AND of both BHE and BLE. Chip can be deselected by either disabling the chip enable signals or by disabling both.

Switching Characteristics (Over the Operating Range)^[8]

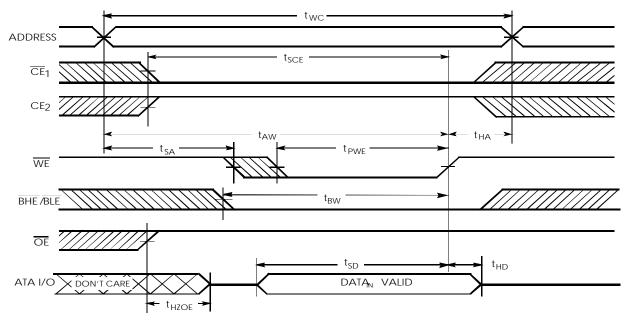
		CY62127	7DV20-55	
Parameter	Description	Min.	Max.	Unit
Read Cycle		'	1	<u> </u>
t _{RC}	Read Cycle Time	55		ns
t _{AA}	Address to Data Valid		55	ns
t _{OHA}	Data Hold from Address Change	10		ns
t _{ACE}	CE ₁ LOW or CE ₂ HIGH to Data Valid		55	ns
t _{DOE}	OE LOW to Data Valid		25	ns
t _{LZOE}	OE LOW to Low Z ^[9]	5		ns
t _{HZOE}	OE HIGH to High Z ^[9,11]		20	ns
t _{LZCE}	CE ₁ LOW or CE ₂ HIGH to Low Z ^[9]	10		ns
t _{HZCE}	CE ₁ HIGH or CE ₂ LOW to High Z ^[9,11]		20	ns
t _{PU}	CE ₁ LOW or CE ₂ HIGH to Power-up	0		ns
t _{PD}	CE ₁ HIGH or CE ₂ LOW to Power-down		55	ns
t _{DBE}	BLE/BHE LOW to Data Valid		55	ns
t _{LZBE} ^[10]	BLE/BHE LOW to Low Z ^[9]	5		ns
t _{HZBE}	BLE/BHE HIGH to High-Z ^[9,11]		20	ns
Write Cycle ^[12]				
t _{WC}	Write Cycle Time	55		ns
t _{SCE}	CE ₁ LOW or CE ₂ HIGH to Write End	45		ns
t _{AW}	Address Set-up to Write End	45		ns
t _{HA}	Address Hold from Write End	0		ns
t _{SA}	Address Set-up to Write Start	0		ns
t _{PWE}	WE Pulse Width	40		ns
t _{BW}	BLE/BHE LOW to Write End	45		ns
t _{SD}	Data Set-up to Write End	25		ns
t _{HD}	Data Hold from Write End	0		ns
t _{HZWE}	WE LOW to High Z ^[9,11]		20	ns
t _{LZWE}	WE HIGH to Low Z ^[9]	10		ns

Switching Waveforms

Read Cycle No. 1 (Address Transition Controlled)[13, 14]



Notes:

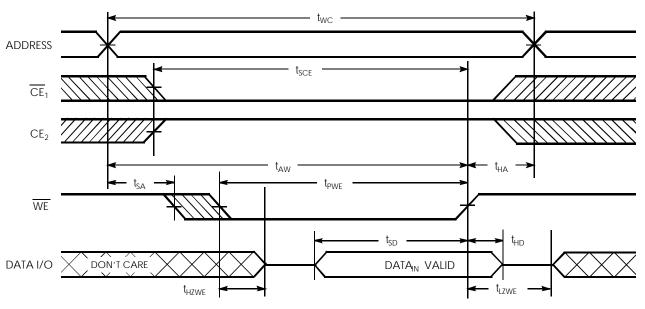

- 8. Test conditions assume signal transition time of 3 ns or less, timing reference levels of $V_{CC(typ.)/2}$, input pulse levels of 0 to $V_{CC(typ.)}$, and output loading of the
- 9. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE} , t_{HZBE} is less than t_{LZBE} , t_{HZOE} is less than t_{LZDE}
- 10. If both byte enables are toggled together, this value is 10 ns.
- 11. t_{HZOE}, t_{HZDE}, and t_{HZWE} transitions are measured when the <u>outputs</u> enter a <u>high-impedance</u> state.

 12. The internal Write time of the memory is defined by the overlap of WE, CE₁ = V_{IL}, BHE and/or BLE = V_{IL}

Switching Waveforms (continued) Read Cycle No. 2 (OE Controlled)^[14, 15]

Write Cycle No. 1 (WE Controlled) [12, 16, 17, 18]

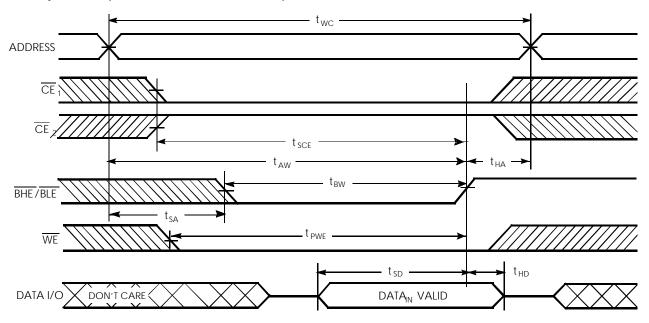
Notes:


- 13. Device is continuously selected. \overline{OE} , $\overline{CE}_1 = V_{IL}$, \overline{BHE} and/or $\overline{BLE} = V_{IL}$, $CE_{2 < Def > Def}$
- 14. WE is HIGH for Read cycle.
- 15. Address valid prior to or coincident with \overline{CE}_1 , \overline{BHE} , \overline{BLE} transition LOW and \overline{CE}_2 transition HIGH.

Switching Waveforms (continued)

Write Cycle No. 2 (CE₁ or CE₂ Controlled) [12, 16, 17, 18]

Write Cycle No. 3 (WE Controlled, OE LOW)[17, 18]


- 16. Data I/O is high-impedance if $\overline{\text{OE}} = \text{V}_{\text{IH}}$.

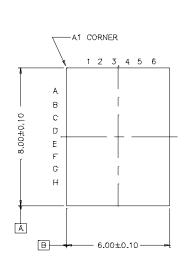
 17. If $\overline{\text{CE}}_1$ goes HIGH or CE_2 goes LOW simultaneously with $\overline{\text{WE}}$ HIGH, the output remains in a high-impedance state.

 18. During the DON'T CARE period in the DATA I/O waveform, the I/Os are in output state and input signals should not be applied.

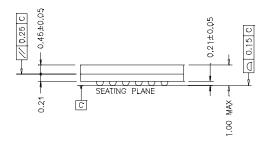
Switching Waveforms (continued)

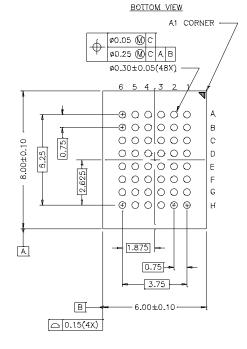
Write Cycle No. 4 (BHE/BLE Controlled, OE LOW)[17]

Truth Table


CE ₁	CE ₂	WE	OE	BHE	BLE	Input / Outputs	Mode	Power
Н	Х	Χ	Χ	Х	Х	High Z	Deselect/Power-down	Standby(I _{SB})
Χ	L	Χ	Χ	Х	Х	High Z	Deselect/Power-down	Standby(I _{SB})
Х	Χ	Χ	Χ	Н	Н	High Z	Deselect/Power-down	Standby(I _{SB})
L	Н	Н	L	L	L	Data Ou(1/00-1/015)	Read	Active(I _{CC})
L	Н	Н	L	Н	L	Data Ou(1/00-1/07); High Z (1/08-1/015)	Read	Active(I _{CC})
L	Н	Н	L	L	Н	High Z (I/O0- I/O7); Data Ou(I/O8- I/O15)	Read	Active(I _{CC})
L	Н	Н	Н	L	Н	High Z	Output Disabled	Active(I _{CC})
L	Н	Н	Н	Н	L	High Z	Output Disabled	Active(I _{CC})
L	Н	Н	Н	L	L	High Z	Output Disabled	Active(I _{CC})
L	Н	L	Χ	L	L	Data In (I/O0-I/O15)	Write	Active(I _{CC})
L	Н	L	Х	Н	L	Data In (I/O0- I/O7); High Z (I/O8- I/O15)	Write	Active(I _{CC})
L	Н	L	Х	L	Н	High Z (I/O0-I/O7); Data In (I/O8-I/O15)	Write	Active(I _{CC})

Ordering Information

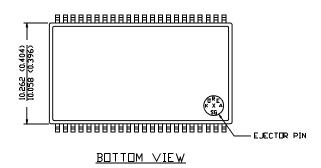

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
55	CY62127DV20L-55BVI	BV48A	48-ball Fine Pitch BGA (6mm x 8mm x 1mm)	Industrial
	CY62127DV20LL-55BVI	BV48A	48-ball Fine Pitch BGA (6mm x 8mm x 1mm)	
	CY62127DV20L-55ZI	Z44	44-lead TSOP Type II	
	CY62127DV20LL-55ZI	Z44	44-lead TSOP Type II	

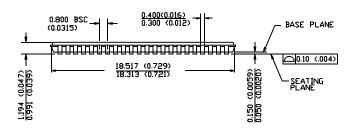

Package Diagrams

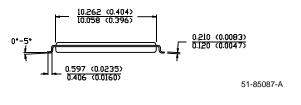
48-ball VFBGA (6 x 8 x 1 mm) BV48A

TOP VIEW

51-85150-*A




Package Diagrams (continued)


44-pin TSOP II Z44

DIMENSION IN MM (INCH)

MoBL is a registered trademark, and MoBL2 and More Battery Life are trademarks of Cypress Semiconductor. All product and company names mentioned in this document are the trademarks of their respective holders.

ADVANCE INFORMATION

CY62127DV20 MoBL2[®]

Document History Page

Document Title: CY62127DV20 MoBL2® 1M (64K x 16) Static RAM Document Number: 38-05301				
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	116568	10/01/02	CDY	New Data Sheet